芯片版图设计是芯片全流程设计不可或缺的一部分。芯片的设计过程整体可分为前端设计(又称为逻辑设计)和后端设计(又称为物理设计),其中,前端设计主要负责逻辑电路的实现,包括需求规格分解、详细设计、HDL编码、仿真验证和逻辑综合等步骤,后端设计即主要指芯片版图设计,负责将逻辑电路进一步转换成一系列包含电路的器件类型、尺寸、相对位置关系及各器件之间的连接关系等物理信息的几何图形,生成GDSII格式的版图文件,并交由晶圆厂商制作光罩进而进行晶圆制造。
芯片版图是集成电路设计环节的最终产物,很大程度上决定了芯片功能的实现以及性能和工艺成本,任何一款性能优秀的芯片的诞生,均离不开芯片版图的精心设计,而如果芯片版图设计不当,将直接导致流片及产品失败,从而可能给芯片设计企业带来重大的经济损失,并拖延研发进度。
芯片版图是芯片逻辑电路设计的物理实现,与芯片所采用的工艺节点密切相关。随着芯片下游应用市场的驱动和对芯片性能要求的不断提高,集成电路上所集成的晶体管数目数目越来越多,芯片工艺节点持续升级,目前已发展到16nm/14nm/10nm/7nm/5nmFinFET工艺,并继续向3nm-1nm演进。而随着工艺节点的不断演进,集成电路的器件结构更加复杂,层次更多,版图设计DRC工作量暴增,设计难度也增加。
先进工艺节点相比大尺寸工艺对于芯片版图设计提出了更高的要求,具体表现在四个方面,一是先进工艺自热效应明显,芯片可靠性风险增大;二是先进工艺二级效应突显,而且版图设计中检查的窗口越来越小,条例越来越细,设计难度加大;三是先进工艺版图图层变多,设计过程对电脑图像显示、运行速度、仿真工具、精度以及设计环境都有很高要求;四是设计人员不仅要有丰富的设计经验,还要对FinFET工艺及先进工艺开发工具有充分了解,对设计者能力要求更高。因此,芯片版图设计在芯片设计及生产过程中的重要性也愈发凸显,通过优化设计和布局布线等,提供高性能、高可靠性、低功耗、低成本的版图设计,是芯片尤其是高端芯片设计开发的基本保障,并具有重要意义。
芯片版图设计包含主要工序